PERSONAL DETAILS & CURRENT POSITION

Date of Birth: 13 September 1993 Languages: English, Hindi

Current Position: Senior Research Fellow (Jan 2022–Present), Department of Physics, IIT Ropar

EDUCATION

Ph.D. in Physics Indian Institute of Technology Ropar, Punjab, India	Dec 2019 – Present
<i>Thesis:</i> Collective excitations and coarsening dynamics of spin-orbit-coupled spinor condensates <i>Advisor:</i> Dr. Sandeep Gautam <i>Thesis Defended:</i> 13 June 2025	
Junior Research Fellow Indian Institute of Technology Ropar, Punjab, India	Jun 2019 – Dec 2019
M.Sc. in Physics Kurukshetra University, Kurukshetra, India	Jul 2013 – Jun 2015 First Class
B.Sc. (Non-Medical) Panjab University, Chandigarh, India	Jul 2010 – Jun 2013 First Class
Employment	
Senior Research Fellow Indian Institute of Technology Ropar, Punjab, India	Jan 2022 – Present
In addition to my primary research, I was involved in supervising and overseeing the progress of master's students and my junior PhD colleagues in the group.	
Junior Research Fellow Indian Institute of Technology Ropar, Punjab, India	Jun 2019 – Dec 2019
Junior Research Fellow Malaviya National Institute of Technology (MNIT), Jaipur, India	Jul 2018 – May 2019
Lecturer DAV College Sector-10, Panjab University, Chandigarh, India	Jul 2017 – May 2018
Physics Tutor (IIT-JEE Preparation) Self-Employed, Chandigarh, India	Aug 2015 – Jun 2017
Provided advanced instruction in physics for national-level engineering entrance exams.	
Awards and Recognition	

Best Oral Presentation Award PHYCON 2025, IIT Ropar, Punjab, India	March 2025
GATE (Physics) Qualified Graduate Aptitude Test in Engineering, India	2017, 2018

CURRENT RESEARCH INTERESTS

- Ultracold Quantum Gases and Spinor Condensates
 - Spin-orbit-coupled, coherently coupled, and dipolar Bose-Einstein condensates (BECs)
 - Quantum droplets, supersolidity, collective excitations, quantum phase transitions
- Non-Equilibrium and Finite-Temperature Dynamics
 - Universal coarsening phenomena and defect dynamics in quenched quantum systems
 - Stochastic methods (SPGPE, SGPE) for real-time thermal dynamics
 - Hartree–Fock–Bogoliubov–Popov theory for spinor condensates
- Quantum Fluids of Light and Polaron Physics
 - Non-equilibrium dynamics and superfluidity in exciton-polariton condensates
 - Impurity physics (polarons) in BECs and polaron-polaritons in driven-dissipative systems

TECHNICAL SKILLS

- **Programming Languages:** Fortran (Advanced), Python (Intermediate), MATLAB (Intermediate), Mathematica (Proficient)
- Numerical Methods: Basis-expansion, finite-difference, and pseudo-spectral methods for PDEs; Eigensolvers; Stochastic differential equation solvers.
- **Parallel Programming & HPC:** OpenMP, OpenACC (basic GPU computing); Proficient with HPC clusters (Slurm) and parallel computation strategies.
- Numerical Libraries: LAPACK, ARPACK, BLAS, FFTW
- Operating Systems & Environments: Linux, Windows; Bash scripting
- Data Visualization: Gnuplot, Matplotlib, Origin
- Machine Learning: Basic knowledge of ML techniques and their potential applications in physics.

SELECTED PHYSICS CODE DEVELOPMENT EXPERIENCE

- 1. **Ground-State Energy Minimization (Mathematica).** Developed Mathematica-based numerical methods for directly minimizing the energy functional to obtain ground states of spin-orbit-coupled spin-1 and pseudospinor condensates. [Phys. Rev. A **111**, 033316 (2025); New J. Phys. **27** 043005 (2025).]
- Variational Excitation Modes (Mathematica). Implemented Mathematica-based variational algorithms for computing low-lying collective excitation modes in spin-1 Bose–Einstein condensates. [Phys. Rev. A 106, 013304 (2022); Phys. Rev. A 108, 043310 (2023).]
- Finite-Difference BdG Solver (Fortran). Developed robust Fortran code employing finite-difference methods to solve the Bogoliubov–de Gennes (BdG) equations for spin-orbit-coupled spin-1 condensates in harmonic and other confining potentials. [Phys. Rev. A 106, 013304 (2022); Phys. Rev. A 108, 043310 (2023).]
- 4. **Basis-Expansion BdG Solver (Fortran).** Created Fortran programs to solve the BdG equations using harmonic oscillator basis-expansion techniques for spin-orbit-coupled pseudospinor and spin-1 condensates in confined geometries. [Phys. Rev. A **109**, 033319 (2024); Phys. Rev. A **111**, 023311 (2025).]
- 5. **Fourier-Pseudospectral GPE Solvers (Fortran).** Implemented Fourier-pseudospectral numerical methods for solving the Gross–Pitaevskii equation (GPE) for single-component and binary dipolar condensates.

- BdG Solver for Homogeneous Systems and Quench Dynamics (Fortran). Developed Fortran-based numerical tools to study spin-orbit-coupled pseudospinor and spin-1 condensates under periodic boundary conditions, including efficient implementations of numerical noise schemes and HPC-compatible I/O strategies for long-time quantum quench simulations. [Phys. Rev. A 111, 033316 (2025).]
- 7. Hartree–Fock–Bogoliubov (Popov) Solvers (Fortran). Built Fortran codes for finite-temperature Hartree–Fock–Bogoliubov–Popov calculations in spin-orbit-coupled pseudospinor and spin-1 Bose-Einstein condensates. [Phys. Rev. A **106**, 013304 (2022); Phys. Rev. A **109**, 033319 (2024).]
- 8. Stochastic and Projected Gross–Pitaevskii Solvers (Fortran). Developed Fortran implementations of stochastic partial differential equations, including the stochastic GPE (SGPE) and projected GPE (SPGPE), tailored for spin-orbit-coupled pseudospinor condensates, with optimized numerical noise algorithms and efficient HPC data handling.

TEACHING ASSISTANTSHIP

PH101: Physics for Engineering (B.Tech. 1 st year) Jan 2021 - Mar 2021; Jan 2022 - Mar 2022; Jan 2023 - Apr 2023 IIT Ropar Involved in conducting tutorial sessions and grading assignments.	
PH102: Physics for Engineering Lab (B.Tech. 1st year)	Mar 2021 – Jun 2021
IIT Ropar	Supervised lab experiments and assisted students.
PH413: Quantum Mechanics 1 (M.Sc. 1st year)	Aug 2022 – Nov 2022; Aug 2023 – Nov 2023
IIT Ropar	Assisted with problem-solving sessions and grading.
GE101: Technology Museum Lab (B.Tech. 1st year)	Mar 2022 – Jul 2022
IIT Ropar Gu	ided students through exhibits and related physics principles.

PUBLICATIONS

Peer-reviewed:

- 1. Ritu, **Rajat**, A. Roy, and S. Gautam, *Thermal amplification and melting of phases in spin-orbit-coupled spin-1 Bose-Einstein condensates*, New J. Phys. **27**, 043005 (2025). Read on journal | View on arXiv
- 2. **Rajat**, P. Banger, and S. Gautam, *Collective excitations and universal coarsening dynamics of a spin-orbit-coupled spin-1 Bose–Einstein condensate*, Phys. Rev. A **111**, 033316 (2025). Read on journal | View on arXiv
- 3. P. Banger, **Rajat**, and S. Gautam, *Excitations of a supersolid annular stripe phase in a spin-orbital-angular-momentum-coupled spin-1 Bose–Einstein condensate*, Phys. Rev. A **111**, 023311 (2025). Read on journal | View on arXiv
- 4. **Rajat**, Ritu, A. Roy, and S. Gautam, *Temperature-induced supersolidity in spin-orbit-coupled Bose gases*, Phys. Rev. A **109**, 033319 (2024). Read on Journal | View on arXiv
- 5. P. Banger, **Rajat**, A. Roy, and S. Gautam, *Quantum phases and spectrum of collective modes in a spin-1 BEC with spin-orbital-angular-momentum coupling*, Phys. Rev. A **108**, 043310 (2023). Read on Journal | View on arXiv
- 6. **Rajat**, A. Roy, and S. Gautam, *Collective excitations in cigar-shaped spin-orbit-coupled spin-1 Bose–Einstein condensates*, Phys. Rev. A **106**, 013304 (2022). Read on Journal | View on arXiv

Preprints:

- 1. **Rajat**, Ritu, and S. Gautam, *Universal coarsening dynamics of supersolid stripe phase of spin-orbit-coupled spinor Bose-Einstein condensates* (Manuscript in preparation, to be submitted soon).
- 2. S. Kumar, **Rajat**, A. Roy, and S. Gautam, *Excitations at zero and finite temperatures in coherently coupled Bose-Einstein condensates.* (Manuscript in preparation, to be submitted soon).

RESEARCH HIGHLIGHTS

1. **Collective Excitations in Spin-1 SO-coupled BECs.** Calculated low-lying modes (dipole, breathing, spin-dipole, spin-breathing) in harmonically trapped spin-1 condensates under SO coupling, Raman coupling, and quadratic Zeeman fields.

Significance: Pinpoints phase boundaries via mode softening and reveals double roton instabilities, crucial for understanding many-body states.

- Universal Coarsening Dynamics. Studied nonequilibrium evolution in a quasi-2D spin-1 SOC BEC after sudden quenches; found domain growth obeying L(t) ~ t^{0.66}. *Significance:* Places SO-coupled BECs in the same universal dynamical class as other binary-fluid systems, confirming robust power-law coarsening relevant to non-equilibrium statistical mechanics.
- 3. **Temperature-Induced Supersolidity.** Showed that rising temperature can *increase* the supersolid stripe domain instead of melting it.

Significance: Challenges the notion that heat necessarily destroys supersolidity; demonstrates finite-T can shift quantum critical points, relevant for realizing robust quantum phases.

4. **Development of Finite-Temperature & Stochastic Methods.** Developed and applied Hartree–Fock–Bogoliubov–Popov solvers and stochastic Gross–Pitaevskii approaches (SGPE/SPGPE) for ultracold gases.

Significance: Enables accurate modeling of quantum and thermal fluctuations, and real-time dynamics in open quantum systems, crucial for bridging theory with experiments in cold atoms and potentially other quantum optical systems.

CONFERENCE PRESENTATIONS

Poster Presentations

- *Temperature-induced Supersolidity in Spin-Orbit-Coupled Bose Gases*, International Conference on BEC, Superfluidity, and Quantum Magnetism, SNBNCBS, Kolkata, India (November 2024).
- *Temperature-induced Supersolidity in Spin-Orbit-Coupled Bose Gases*, **Ultracold Atoms Japan 2024**, OIST, Japan (April 2024).
- *Temperature-induced Supersolidity in Spin-Orbit-Coupled Bose Gases*, National Workshop on Quantum Technologies (NWQT 2024), BHU, India (March 2024).
- Collective Excitations in Cigar-Shaped Spin-Orbit-Coupled Spin-1 Bose–Einstein Condensates, Quantum Technologies with UltraCold Atoms, IISER Pune, India (November 2023).
- Collective Excitations in Cigar-Shaped Spin-Orbit-Coupled Spin-1 Bose–Einstein Condensates, Conference on Condensed Matter Physics (CCMP 2023), PRL Ahmedabad, India (February 2023).

Oral Presentations

- Collective Excitations and Universal Coarsening Dynamics in Spin-Orbit-Coupled Spin-1 Bose–Einstein Condensates, presented at The National Physics Conference (PHYCON 2025), IIT Ropar, India (March 2025) [Best Oral Presentation Award].
- *Temperature-induced supersolidity in spin-orbit-coupled Bose gases,* presented at **QMAT2024**, IIT Guwahati, India (Dec 2024).
- *Temperature-induced supersolidity in spin-orbit-coupled Bose gases,* presented at **Physics Day**, IIT Ropar, India (Mar 2024).

Workshops & Schools Attended

- GIAN Course: Ultracold Molecules and Controlled Chemistry, IIT Ropar, India (December 2019).
- Online School and Discussion Meeting on *Trapped Atoms, Molecules, and Ions (TAMIONs),* ICTS Bangalore, India (May 2021).
- Webinar on Machine Learning (ML) for Physics, NIT Rourkela, India (June 2024).

References

- **Dr. Sandeep Gautam** (Ph.D. Advisor) Professor, Department of Physics, IIT Ropar Email: sandeep@iitrpr.ac.in, Tel: +91 84271-01472
- Dr. Arko Roy Associate Professor, Department of Physics, IIT Mandi Email: arko@iitmandi.ac.in, Tel: +91 90995-98065

• Dr. Kuldeep Suthar

Assistant Professor, Department of Physics, Central University of Rajasthan Email: kuldeep.suthar@curaj.ac.in, Tel: +91 95741-91842